A linear eigenvalue algorithm for the nonlinear eigenvalue problem
نویسندگان
چکیده
منابع مشابه
A linear eigenvalue algorithm for the nonlinear eigenvalue problem
The Arnoldi method for standard eigenvalue problems possesses several attractive properties making it robust, reliable and efficient for many problems. Our first important result is a characterization of a general nonlinear eigenvalue problem (NEP) as a standard but infinite dimensional eigenvalue problem involving an integration operator denoted B. In this paper we present a new algorithm equi...
متن کاملA Nonlinear Eigenvalue Problem
My lectures at the Minicorsi di Analisi Matematica at Padova in June 2000 are written up in these notes1. They are an updated and extended version of my lectures [37] at Jyväskylä in October 1994. In particular, an account of the exciting recent development of the asymptotic case is included, which is called the ∞-eigenvalue problem. I wish to thank the University of Padova for financial suppor...
متن کاملIsoperimetric Inequalities for a Nonlinear Eigenvalue Problem
An estimate for the spectrum of the two-dimensional eigenvalue problem Am + Xe" = 0 in D (X > 0), u = 0 on 3 D is derived, and upper and lower pointwise bounds for the solutions are constructed. 1. Let D be a simply connected bounded domain in the plane with a piecewise analytic boundary 3D. Consider the nonlinear Dirichlet problem Am(x) + Xe"w = 0 in D, (1) u(x) = 0 on dD, where X is a positiv...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Nonlinear Krylov Accelerator for the Boltzmann k-Eigenvalue Problem
Matthew T. Calef, Erin D. Fichtl, James S. Warsa, Markus Berndt, Neil N. Carlson, CCS-2 We compare variants of Anderson Mixing with the Jacobian-Free Newton-Krylov and Broyden methods applied to the k-eigenvalue formulation of the linear Boltzmann transport equation. We present evidence that one variant of Anderson Mixing finds solutions in the fewest number of iterations. We examine and streng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2012
ISSN: 0029-599X,0945-3245
DOI: 10.1007/s00211-012-0453-0